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ABSTRACT 

One -dimensional analysis is applied to the problem of determining 

the flow parameters a t  the exit of a rocket thrust augmentor, given the 

chemical compositions of primary, secondary, and exit, and the flow 

parameters at the entrance (primary and secondary). 

burning auxiliary fuel (liquid) in the secondary is included. 

The effect of 

With the exception of the static pressure ratios and mass flow 

ratios, the usual flow parameters and parameter ratios such as Mach 

number, specific heat ratio, total temperature and total pressure do not 

appear explicitly in the equations. These equations must generally be 

solved for each specific separate problem. 

Approved By: 

Director, Gas Dynamics/ 
Thermochemistry Laboratory 
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LIST OF SYMBOLS 

cross-sectional area 

coefficient in polynomial for  enthalpy 

coefficient in polynominal for enthalpy at  exit 

constant in equation derived from momentum equation 

mass fraction of element in molecule 

molar enthalpy 

enthalpy per unit mass 

degrees Kelvin 

mass flow rate 

mass fraction of molecule 

static pressure 

universal gas constant 

absolute temperature 

velocity, parallel to axis of augmentor 

molecular weight, effective or actual 

ratio of mass flow rate to primary mass flow rate 

density 

(PA) 1 (Pp Ap) 
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Subscripts 

e 

f 

j 

k 

0 

P 

6 

W 

X 

exit flow 

fuel added to secondary 

indicates a particular molecular form or a particular element 

indicates a particular coefficient 

indicates the first coefficient in the enthalpy series or total 
value as for total enthalpy jh,) 

primary flow 

secondary flow 

augmentor wall 

component in direction of augmentor axis of symmetry 
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INTRODUCTION 

One -dimensional analysis has been applied to perfect fluid flows 

for many years. 

particularly we l l  known. 

thrust augmentation (see Reference 1, for example). 

In the case of ejector problems this application is 

Recently it has been applied to the problem of 

In this paper, one-dimensional analysis is  applied to rocket thrust 

augmentation for gases which follow the perfect gas law but for which the 

enthalpy is not a linear function of temperature but can be represented 

by a finite power series in temperature only, i. e. ,  for which the specific 

heats are functions of temperature. 

Specifically, the enthalpy is assumed to be represented by a fifth 

degree polynomial in the absolute temperature. 

included as parts of the polynomial and therefore do not appear explicitly 

as such heats. 

coefficients for a large number of possible chemical forms for the two 

temperature ranges 300" - 1000" K and 1000" - 5000" K. The extension 

of the present procedure to a lower temperature range 

within that range (as may be necessary when fuel i s  to be added to the 

secondary a i r  flow) depends only on the determination of suitable co-  

efficients for that range. 

Heats of formation a re  

Zeleznik and Gordon in Reference 2 give the polynomial 

and for liquids 

Because the enthalpy is not assumed to be a linear function of 

temperature, parameters and parameter ratios which a re  of importance 

for calorically perfect gases do not appear explicitly in the equations or 
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in their solutions although several may be calculated if this is desired. 

Examples a r e  total temperature, total pressure, specific heat ratios, 

and Mach numbers. 

momentum equation). 

(The combinztion yM2 is recognizable in the 

If this were desirable, the method could be extended to that for a 

plane-by-plane process in which the chemical kinetics of the flow was 

calculated. 
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STATEMENT O F  THE PROBLEM 

A schematic drawing to illustrate the problem is given in F i g u r e  1. 

A rocket, instead of exhausting into the atmosphere, furnishes the primary 

flow (p) for a thrust augmentor. The secondary (s) is atmospheric air. 

Fuel (f) may or  may not be added to the secondary. 

assumed. The chemical compositions of primary, seccndary, fuel 

added, and exit (e) a r e  assumed known, along with the flow paramaters of 

primary and secondary. 

flow direction of the pressure force on the augmentor, to determine the 

flow parameters a t  the exit. 

Complete mixing is 

The problem is, given the component in the 
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THE EQUATIONS GOVERNING THE FLOW 

The Perfect Gas Law 

It is assumed that any gaseous component or any gaseous section 

of the flow acts  as a thermally perfect gas, i. e., that 

T *  
RO 2 ,  - 

P W 

where Ro is the universal gas constant and W is either actual or effective 

molecular weight. 

from 

For any mixture of gases, W is then to be calculated 

1 C nj 
w=- = 

in which n- is the mass fraction of component j and W -  is theamolecular J J 

weight of that component. The effective molecular weights at relevant 

cross -sectional areas a r e  calculable since the corresponding chemical 

compositions a r e  assumed to be known. 

Conservation of Mass 

The mass flow rate leaving the augmentor must equal the sum of 

the mass flow rates entering, or 

:%The c. g. s. system of units is considered to be used throughout this 
report. Ro, for example, might be expressed in ergs/mole"k. 
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I 
1 
1 

where 

If we let 

me = m t ms t mf P 

m = p u A .  

m 
)L=-  , 

then 

Conservation of Elements 

(3) 

Also the rate at which each chemical element enters and leaves 

must be the same, i. e., 

or 

where nej, for example, 

and c 

tion must hold for each element k. 

ie the mass fraction of molecule j a t  the exit, 

is the mass fraction of element k in this molecule. This equa- 
jk 

In reality, equation (7) or  ( 8 )  would be used in selecting inputs 

for any computing program since the chemical composition at the exit 

is assumed to be known. It therefore provides a series of conditions 
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under which the selected inputs a r e  realistic. 

The Momentum Eauation 

where p for example, is the pressure in the primary and Jpw dA, 

is the component of the wall pressure force in the direction (zpporiite the 

main flow, 

Cons e r vation of Energy 

PI 

pw dA, is therefore the thrust on the augmentor. s 

m, [hs + u:] + mf [hf + 'f.1 
or 

be be (T) + - u  1 '1 = hp t 2 u z  + bs[hs t $ u t ]  + b f [ h f + z u f 2 l  1 (11)  2 e  

in which h (T) is static enthalpy per unit mass. For any given chemical 

composition, it is assumed to be a function of temperature only. 

The Static Enthalpy Equations 

The molar enthalpy, H for any component of the flow, is 
j' 

assumed to be approximated by 

'%The fuel is assumed to be added as a liquid. 



I 

Seleznik and Gordon in Reference 2 tabulate values of the coeffi- 

cients in this equation for a large number of elements and molecules 

dealt with in rocketry for two temperature ranges, 300" - 1000°K and 

1000" - 5000°K. 
298. 15°K for their reference substances. * 

Their enthalpy base was  an assigned value of zero at 

Success in mathematically introducing cold rocket fuel into the 

secondary depends on obtaining suitable coefficients for this equation for 

a lower temperature range. It appears that this can be done. 

The static enthalpy per unit mass of any flow is given by 

h = T n . h  
J J ~  

1 
where h. is the static enthalpy per unit mass of molecular form j and is J 

given by 

H -  
h. =d 

J Wj 

so that 

*Heats of formation a r e  automatically taken into account. 
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REDUCTION OF THE PROBLEM TO THAT OF 
SOLVING T W O  SIMULTANEOUS EQUATIONS 

Assuming that the wall pressure integral is known, the problem 

can be reduced to that of solving two simultaneous equations in two 

unknowns, velocity and temperature. Essentially the two equations 

a r e  the energy and momentum equations. 

Given the temperatures and velocities of primary, secondary, 

and fuel added, the right hand side of the energy equation is immediately 

calculable. hp, for example, is given by 

For the left-hand side of the equation, i. e. at the exit, the temperature 

is unknown. Here the enthalpy can be written 

5 

k=l 
he = b o  + c bk Tk 

where 

bo = C 3 
j w j  aoj 

and 

This is a fifth degree polynomial in the temperature with known 

coefficients. The energy equation then becomes a comparatively 
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simple relation between temperature and velocity at the exit, namely, 

1 5 

k=l 
Ge [bo t Z & Tek t - 2 ue2] = be hoe 

e 

where 

is total enthalpy per unit mass  at the exit. 
hoe 

It is proposed to express the momentum equation in terms of 

the same two variables, using the remaining conditions where neces- 

sa ry .  The mass flow rate equations, (4) and (5), can be written, 

using the perfect gas law, ( l ) ,  

and 

w T, u c ” = q - -  - 
wP 

where 

P A  q =- 
pP AP 

The momentum equation, (9). can be written, using the above, as  

ws us2 1 we u e z ]  = 1 t = 4- ‘Is 
w u 2  

+ 
Ro T e  R o  Tp R o  Ts ‘le [I t 
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is equivalent to y M Z  for the calorically perfect (Here the ratio - WU2 
ROT 

gas.  

a conversion.) 

only known functions, so one can write  

There appears to be no point here, however, in using such 

The right hand side of this equation. (23), contains 

qe can be eliminated using the known mass flow rate, pe, from the 

equation 

so that Equation (24) can be written 

On solving Equation (26) for ue, one obtains 

This is the desired form. 

(19) by iteration yields both ue and T,. 

from Equatiot)(2!5) and- can be obtained from (22). Thus the 

problem in principle i s  solved. 

The simultaneous solution of (27) and 

qe can then be calculated 

Pe 

PP 
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DISCUSSION OF RESULTS 

Note that, as in the case of the corresponding equation for 

calorically perfect fluids, there are  two roots of Equation (27) for 

each value of Te. 

other to subsonic, exit flow. 

One of these must correspond to supersonic, the 

This equation could easily be expressed in non-dimensional 

form by dividing by up, for example. 

that each separate problem wi l l  have its own specific solution, such 

a procedure could be questioned. 

is comparing solutions for calorically perfect and imperfect fluids. 

However, in view of the fact 

It can be justified, at least when one 

Note also that total temperature and total pressure do not 

appear and, in fact, have no apparent significance. Much more 

significant is total enthalpy which is calculated as part of the procedure. 

At least two separate but related studies of calculated results 

could be made. 

pressure distribution (thrust) at constant exit composition; and the 

other would be the effect on the flow parameters of varying exit 

composition at constant thrust. 

estimating the sensitivity of the flow parameters for a constant area 

duct to changes in chemical cornposition. 

One would be the effect on the flow parameters of wall 

The latter might be useful in 
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